On the Utility of Populations in Evolutionary Algorithms
نویسندگان
چکیده
Evolutionary algorithms (EAs) are population-based search heuristics often used for function optimization. Typically they employ selection, crossover, and mutation as search operators. It is known that EAs are outperformed by simple hillclimbers in some cases. Thus, it may be asked whether the use of a population and crossover is at all advantageous. In this paper it is rigorously proven that the use of a population instead of just a single individual can be an advantage of its own even without making use of crossover. This establishes by example the advantage of EAs compared to (random) hill-climbers on appropriate objective functions. Moreover, we describe one particular situation where intuitively a population should outperform a single individual and present a formal proof justifying this intuition.
منابع مشابه
An Improved Imperialist Competitive Algorithm based on a new assimilation strategy
Meta-heuristic algorithms inspired by the natural processes are part of the optimization algorithms that they have been considered in recent years, such as genetic algorithm, particle swarm optimization, ant colony optimization, Firefly algorithm. Recently, a new kind of evolutionary algorithm has been proposed that it is inspired by the human sociopolitical evolution process. This new algorith...
متن کاملStudy of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning
Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...
متن کاملOptimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network
Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...
متن کاملApproximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...
متن کاملEstimation of LPC coefficients using Evolutionary Algorithms
The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...
متن کاملAppraisal of the evolutionary-based methodologies in generation of artificial earthquake time histories
Through the last three decades different seismological and engineering approaches for the generation of artificial earthquakes have been proposed. Selection of an appropriate method for the generation of applicable artificial earthquake accelerograms (AEAs) has been a challenging subject in the time history analysis of the structures in the case of the absence of sufficient recorded accelerogra...
متن کامل